Copied to
clipboard

G = C62.261C23order 288 = 25·32

106th non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.261C23, (C6×Q8)⋊7S3, C6.50(S3×Q8), C35(D63Q8), (C3×C12).105D4, (C2×C12).253D6, C12.64(C3⋊D4), C12⋊Dic324C2, C3225(C22⋊Q8), (C6×C12).269C22, C6.54(Q83S3), C6.Dic627C2, C4.18(C327D4), C6.11D12.11C2, C2.8(C12.26D6), (Q8×C3×C6)⋊7C2, (C2×C3⋊S3)⋊9Q8, C2.9(Q8×C3⋊S3), (C2×Q8)⋊5(C3⋊S3), (C3×C6).77(C2×Q8), (C3×C6).291(C2×D4), C6.132(C2×C3⋊D4), C2.21(C2×C327D4), (C3×C6).163(C4○D4), (C2×C6).278(C22×S3), C22.64(C22×C3⋊S3), (C22×C3⋊S3).94C22, (C2×C3⋊Dic3).170C22, (C2×C4×C3⋊S3).8C2, (C2×C4).56(C2×C3⋊S3), SmallGroup(288,803)

Series: Derived Chief Lower central Upper central

C1C62 — C62.261C23
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C62.261C23
C32C62 — C62.261C23
C1C22C2×Q8

Generators and relations for C62.261C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=e2=b3, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, ede-1=b3d >

Subgroups: 796 in 222 conjugacy classes, 79 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C2×C4, C2×C4, C2×C4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, C3⋊S3, C3×C6, C4×S3, C2×Dic3, C2×C12, C3×Q8, C22×S3, C22⋊Q8, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, Dic3⋊C4, C4⋊Dic3, D6⋊C4, S3×C2×C4, C6×Q8, C4×C3⋊S3, C2×C3⋊Dic3, C2×C3⋊Dic3, C6×C12, C6×C12, Q8×C32, C22×C3⋊S3, D63Q8, C6.Dic6, C12⋊Dic3, C6.11D12, C2×C4×C3⋊S3, Q8×C3×C6, C62.261C23
Quotients: C1, C2, C22, S3, D4, Q8, C23, D6, C2×D4, C2×Q8, C4○D4, C3⋊S3, C3⋊D4, C22×S3, C22⋊Q8, C2×C3⋊S3, S3×Q8, Q83S3, C2×C3⋊D4, C327D4, C22×C3⋊S3, D63Q8, Q8×C3⋊S3, C12.26D6, C2×C327D4, C62.261C23

Smallest permutation representation of C62.261C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 18 58 31 39 61)(2 13 59 32 40 62)(3 14 60 33 41 63)(4 15 55 34 42 64)(5 16 56 35 37 65)(6 17 57 36 38 66)(7 126 27 24 140 118)(8 121 28 19 141 119)(9 122 29 20 142 120)(10 123 30 21 143 115)(11 124 25 22 144 116)(12 125 26 23 139 117)(43 92 51 73 101 71)(44 93 52 74 102 72)(45 94 53 75 97 67)(46 95 54 76 98 68)(47 96 49 77 99 69)(48 91 50 78 100 70)(79 128 87 109 137 107)(80 129 88 110 138 108)(81 130 89 111 133 103)(82 131 90 112 134 104)(83 132 85 113 135 105)(84 127 86 114 136 106)
(2 6)(3 5)(7 28)(8 27)(9 26)(10 25)(11 30)(12 29)(13 66)(14 65)(15 64)(16 63)(17 62)(18 61)(19 118)(20 117)(21 116)(22 115)(23 120)(24 119)(32 36)(33 35)(37 60)(38 59)(39 58)(40 57)(41 56)(42 55)(43 102)(44 101)(45 100)(46 99)(47 98)(48 97)(49 54)(50 53)(51 52)(67 70)(68 69)(71 72)(73 93)(74 92)(75 91)(76 96)(77 95)(78 94)(79 135)(80 134)(81 133)(82 138)(83 137)(84 136)(85 87)(88 90)(104 108)(105 107)(109 132)(110 131)(111 130)(112 129)(113 128)(114 127)(121 126)(122 125)(123 124)(139 142)(140 141)(143 144)
(1 89 31 103)(2 90 32 104)(3 85 33 105)(4 86 34 106)(5 87 35 107)(6 88 36 108)(7 95 24 98)(8 96 19 99)(9 91 20 100)(10 92 21 101)(11 93 22 102)(12 94 23 97)(13 112 40 82)(14 113 41 83)(15 114 42 84)(16 109 37 79)(17 110 38 80)(18 111 39 81)(25 74 116 44)(26 75 117 45)(27 76 118 46)(28 77 119 47)(29 78 120 48)(30 73 115 43)(49 141 69 121)(50 142 70 122)(51 143 71 123)(52 144 72 124)(53 139 67 125)(54 140 68 126)(55 136 64 127)(56 137 65 128)(57 138 66 129)(58 133 61 130)(59 134 62 131)(60 135 63 132)
(1 53 31 67)(2 54 32 68)(3 49 33 69)(4 50 34 70)(5 51 35 71)(6 52 36 72)(7 134 24 131)(8 135 19 132)(9 136 20 127)(10 137 21 128)(11 138 22 129)(12 133 23 130)(13 76 40 46)(14 77 41 47)(15 78 42 48)(16 73 37 43)(17 74 38 44)(18 75 39 45)(25 80 116 110)(26 81 117 111)(27 82 118 112)(28 83 119 113)(29 84 120 114)(30 79 115 109)(55 100 64 91)(56 101 65 92)(57 102 66 93)(58 97 61 94)(59 98 62 95)(60 99 63 96)(85 121 105 141)(86 122 106 142)(87 123 107 143)(88 124 108 144)(89 125 103 139)(90 126 104 140)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,18,58,31,39,61)(2,13,59,32,40,62)(3,14,60,33,41,63)(4,15,55,34,42,64)(5,16,56,35,37,65)(6,17,57,36,38,66)(7,126,27,24,140,118)(8,121,28,19,141,119)(9,122,29,20,142,120)(10,123,30,21,143,115)(11,124,25,22,144,116)(12,125,26,23,139,117)(43,92,51,73,101,71)(44,93,52,74,102,72)(45,94,53,75,97,67)(46,95,54,76,98,68)(47,96,49,77,99,69)(48,91,50,78,100,70)(79,128,87,109,137,107)(80,129,88,110,138,108)(81,130,89,111,133,103)(82,131,90,112,134,104)(83,132,85,113,135,105)(84,127,86,114,136,106), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,118)(20,117)(21,116)(22,115)(23,120)(24,119)(32,36)(33,35)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,54)(50,53)(51,52)(67,70)(68,69)(71,72)(73,93)(74,92)(75,91)(76,96)(77,95)(78,94)(79,135)(80,134)(81,133)(82,138)(83,137)(84,136)(85,87)(88,90)(104,108)(105,107)(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(121,126)(122,125)(123,124)(139,142)(140,141)(143,144), (1,89,31,103)(2,90,32,104)(3,85,33,105)(4,86,34,106)(5,87,35,107)(6,88,36,108)(7,95,24,98)(8,96,19,99)(9,91,20,100)(10,92,21,101)(11,93,22,102)(12,94,23,97)(13,112,40,82)(14,113,41,83)(15,114,42,84)(16,109,37,79)(17,110,38,80)(18,111,39,81)(25,74,116,44)(26,75,117,45)(27,76,118,46)(28,77,119,47)(29,78,120,48)(30,73,115,43)(49,141,69,121)(50,142,70,122)(51,143,71,123)(52,144,72,124)(53,139,67,125)(54,140,68,126)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,133,61,130)(59,134,62,131)(60,135,63,132), (1,53,31,67)(2,54,32,68)(3,49,33,69)(4,50,34,70)(5,51,35,71)(6,52,36,72)(7,134,24,131)(8,135,19,132)(9,136,20,127)(10,137,21,128)(11,138,22,129)(12,133,23,130)(13,76,40,46)(14,77,41,47)(15,78,42,48)(16,73,37,43)(17,74,38,44)(18,75,39,45)(25,80,116,110)(26,81,117,111)(27,82,118,112)(28,83,119,113)(29,84,120,114)(30,79,115,109)(55,100,64,91)(56,101,65,92)(57,102,66,93)(58,97,61,94)(59,98,62,95)(60,99,63,96)(85,121,105,141)(86,122,106,142)(87,123,107,143)(88,124,108,144)(89,125,103,139)(90,126,104,140)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,18,58,31,39,61)(2,13,59,32,40,62)(3,14,60,33,41,63)(4,15,55,34,42,64)(5,16,56,35,37,65)(6,17,57,36,38,66)(7,126,27,24,140,118)(8,121,28,19,141,119)(9,122,29,20,142,120)(10,123,30,21,143,115)(11,124,25,22,144,116)(12,125,26,23,139,117)(43,92,51,73,101,71)(44,93,52,74,102,72)(45,94,53,75,97,67)(46,95,54,76,98,68)(47,96,49,77,99,69)(48,91,50,78,100,70)(79,128,87,109,137,107)(80,129,88,110,138,108)(81,130,89,111,133,103)(82,131,90,112,134,104)(83,132,85,113,135,105)(84,127,86,114,136,106), (2,6)(3,5)(7,28)(8,27)(9,26)(10,25)(11,30)(12,29)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,118)(20,117)(21,116)(22,115)(23,120)(24,119)(32,36)(33,35)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,102)(44,101)(45,100)(46,99)(47,98)(48,97)(49,54)(50,53)(51,52)(67,70)(68,69)(71,72)(73,93)(74,92)(75,91)(76,96)(77,95)(78,94)(79,135)(80,134)(81,133)(82,138)(83,137)(84,136)(85,87)(88,90)(104,108)(105,107)(109,132)(110,131)(111,130)(112,129)(113,128)(114,127)(121,126)(122,125)(123,124)(139,142)(140,141)(143,144), (1,89,31,103)(2,90,32,104)(3,85,33,105)(4,86,34,106)(5,87,35,107)(6,88,36,108)(7,95,24,98)(8,96,19,99)(9,91,20,100)(10,92,21,101)(11,93,22,102)(12,94,23,97)(13,112,40,82)(14,113,41,83)(15,114,42,84)(16,109,37,79)(17,110,38,80)(18,111,39,81)(25,74,116,44)(26,75,117,45)(27,76,118,46)(28,77,119,47)(29,78,120,48)(30,73,115,43)(49,141,69,121)(50,142,70,122)(51,143,71,123)(52,144,72,124)(53,139,67,125)(54,140,68,126)(55,136,64,127)(56,137,65,128)(57,138,66,129)(58,133,61,130)(59,134,62,131)(60,135,63,132), (1,53,31,67)(2,54,32,68)(3,49,33,69)(4,50,34,70)(5,51,35,71)(6,52,36,72)(7,134,24,131)(8,135,19,132)(9,136,20,127)(10,137,21,128)(11,138,22,129)(12,133,23,130)(13,76,40,46)(14,77,41,47)(15,78,42,48)(16,73,37,43)(17,74,38,44)(18,75,39,45)(25,80,116,110)(26,81,117,111)(27,82,118,112)(28,83,119,113)(29,84,120,114)(30,79,115,109)(55,100,64,91)(56,101,65,92)(57,102,66,93)(58,97,61,94)(59,98,62,95)(60,99,63,96)(85,121,105,141)(86,122,106,142)(87,123,107,143)(88,124,108,144)(89,125,103,139)(90,126,104,140) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,18,58,31,39,61),(2,13,59,32,40,62),(3,14,60,33,41,63),(4,15,55,34,42,64),(5,16,56,35,37,65),(6,17,57,36,38,66),(7,126,27,24,140,118),(8,121,28,19,141,119),(9,122,29,20,142,120),(10,123,30,21,143,115),(11,124,25,22,144,116),(12,125,26,23,139,117),(43,92,51,73,101,71),(44,93,52,74,102,72),(45,94,53,75,97,67),(46,95,54,76,98,68),(47,96,49,77,99,69),(48,91,50,78,100,70),(79,128,87,109,137,107),(80,129,88,110,138,108),(81,130,89,111,133,103),(82,131,90,112,134,104),(83,132,85,113,135,105),(84,127,86,114,136,106)], [(2,6),(3,5),(7,28),(8,27),(9,26),(10,25),(11,30),(12,29),(13,66),(14,65),(15,64),(16,63),(17,62),(18,61),(19,118),(20,117),(21,116),(22,115),(23,120),(24,119),(32,36),(33,35),(37,60),(38,59),(39,58),(40,57),(41,56),(42,55),(43,102),(44,101),(45,100),(46,99),(47,98),(48,97),(49,54),(50,53),(51,52),(67,70),(68,69),(71,72),(73,93),(74,92),(75,91),(76,96),(77,95),(78,94),(79,135),(80,134),(81,133),(82,138),(83,137),(84,136),(85,87),(88,90),(104,108),(105,107),(109,132),(110,131),(111,130),(112,129),(113,128),(114,127),(121,126),(122,125),(123,124),(139,142),(140,141),(143,144)], [(1,89,31,103),(2,90,32,104),(3,85,33,105),(4,86,34,106),(5,87,35,107),(6,88,36,108),(7,95,24,98),(8,96,19,99),(9,91,20,100),(10,92,21,101),(11,93,22,102),(12,94,23,97),(13,112,40,82),(14,113,41,83),(15,114,42,84),(16,109,37,79),(17,110,38,80),(18,111,39,81),(25,74,116,44),(26,75,117,45),(27,76,118,46),(28,77,119,47),(29,78,120,48),(30,73,115,43),(49,141,69,121),(50,142,70,122),(51,143,71,123),(52,144,72,124),(53,139,67,125),(54,140,68,126),(55,136,64,127),(56,137,65,128),(57,138,66,129),(58,133,61,130),(59,134,62,131),(60,135,63,132)], [(1,53,31,67),(2,54,32,68),(3,49,33,69),(4,50,34,70),(5,51,35,71),(6,52,36,72),(7,134,24,131),(8,135,19,132),(9,136,20,127),(10,137,21,128),(11,138,22,129),(12,133,23,130),(13,76,40,46),(14,77,41,47),(15,78,42,48),(16,73,37,43),(17,74,38,44),(18,75,39,45),(25,80,116,110),(26,81,117,111),(27,82,118,112),(28,83,119,113),(29,84,120,114),(30,79,115,109),(55,100,64,91),(56,101,65,92),(57,102,66,93),(58,97,61,94),(59,98,62,95),(60,99,63,96),(85,121,105,141),(86,122,106,142),(87,123,107,143),(88,124,108,144),(89,125,103,139),(90,126,104,140)]])

54 conjugacy classes

class 1 2A2B2C2D2E3A3B3C3D4A4B4C4D4E4F4G4H6A···6L12A···12X
order1222223333444444446···612···12
size1111181822222244181836362···24···4

54 irreducible representations

dim11111122222244
type++++++++-+-+
imageC1C2C2C2C2C2S3D4Q8D6C4○D4C3⋊D4S3×Q8Q83S3
kernelC62.261C23C6.Dic6C12⋊Dic3C6.11D12C2×C4×C3⋊S3Q8×C3×C6C6×Q8C3×C12C2×C3⋊S3C2×C12C3×C6C12C6C6
# reps1212114221221644

Matrix representation of C62.261C23 in GL6(𝔽13)

0120000
110000
0012000
0001200
000001
0000121
,
12120000
100000
0012000
0001200
000010
000001
,
100000
12120000
001000
0001200
000001
000010
,
1200000
0120000
005000
000800
000010
000001
,
1190000
420000
000100
0012000
0000114
000092

G:=sub<GL(6,GF(13))| [0,1,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,1],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,8,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,4,0,0,0,0,9,2,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,11,9,0,0,0,0,4,2] >;

C62.261C23 in GAP, Magma, Sage, TeX

C_6^2._{261}C_2^3
% in TeX

G:=Group("C6^2.261C2^3");
// GroupNames label

G:=SmallGroup(288,803);
// by ID

G=gap.SmallGroup(288,803);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,254,219,100,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=e^2=b^3,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽